APPROXIMATE EVALUATION OF THE THERMAL DIFFUSION
CONSTANT IN LIQUID ISOTOPIC MIXTURES

G. D. Rabinovich UDC 533.735

An attempt is made to derive a semiempirical dependence for the thermal diffusion constant
in liquid isotopic mixtures on the basis of data available in the literature.

Since the theory available for transport in liquids does not permit a numerical calculation of the ther-
mal diffusion constant Qlig for any liquid isotopic mixtures, efforts are being made to obtain empirical de-
pendences for at least an approximate evaluation of this quantity. The very few experimental %ig values
which are available for liquids are shown in Table 1.

For gaseous isotopic mixtures, we have the following relation [1]:
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where R is a function characterizing the force of the intermolecular interaction. The second factor often
makes the primary contribution to the numerical value of og calculated from Eqg. (1).
In this paper, we adopt the following dependence for liquid isotopic mixtures:
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This agsumption is in agreement with the results of Wirtz [2], according to whom

g =t()/ M 1) ®

since it is easily shown that the expressions in the parentheses in Eqs. (2) and (3) are essentially identical,
differing only by a factor which is essentially equal to unity. That relations of the type (2) should be sought
is also confirmed by the tendency noted in [3] for Aig to decrease with a decrease in the relative mass
difference.

Difficulties arise in the calculation of the ratio (M; —M,) /(M; + M,) shown in the sixth column in Table
1 when the isotopes being separated can appear in the initial compound in different combinations, and when
this initial compound may contain in addition isotopes of other elements. In these cases, the elements whose
isotopes are present in quantities less than 1% are treated in the subsequent calculations as monoisotopic.
In ethylene trichloride, e.g., the mass numbers 130, 132, 134, and 136 should appear; for these four masses,
the difference M; — M, should be equal to two mass units in three cases, four in two cases, and six in one
case. The average value of this difference, which is the effective mass difference, is (3:2+ 2-4 +1-6)
/(3 + 2+ 1) =3/% mass units, and M, + M, = 2Myy, which gives the desired ratio, is equal to 0.0125. An
analogous situation occurs during the melting of metals, which, as was shown in [4, 5], diffuse as aggre-
gates containing various numbers of atoms (Table 2). It can be shown that in all such cases the relation

1

holds where A is the minimum difference between the mass numbers for two types of molecules, and m is
the number of possible mass combinations. This procedure of calculating the effect of mass difference is,
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TABLE 1. Thermal Diffusion Constants for Ligquid Isotopic Mix-

tures
Isotopes being Thermal diffu- M— M,
No. separated Compound sion constant Reference My+M;
1 H,—D, D,0+H,0 0,02 [12] 0,0526
2 Hy—D, CoDy-CoHq 0,2 [13] 0,0370
3 Lib—Lj? Li 0,142 [4,6] 0,0360
4 Lis—Liv LiNQ, 0,02 [15] 0,0071
0,00384
5 C35—CI37 C,HCl, 0,1 [14] 0,0125
6 Cl#5—Cl87 #-CyH,Cl 0,1 [3] 0,0108
7 K3*—K# K 0,0596* 4] 0,011t
8 Gab®—Gan Ga 0,038 [4] 0,00523
9 Br9—Brst C,H,Br 0,04 [3] 0,00637
10 Rb#5—Rbs7 Rb 0,031 i4] 0,00453
1 Uzss_{2ss UF, 0,007—0,01 [11] 0,00428

*This value is found from a recalculation on the basis of the data of [4], which con-
tained an error in the calculation of .

TABLE 2. Minimum Number of Atoms in Ag-~ of course, based on an assumed independence of ay;,
gregates in Molten Metals According to [4]™ from the concentration; this has been confirmed by
\eral |No. of atoms i el No. of atoms in the experiments of Prigogine with D,O —H,O mixtures
cra the aggregates® the aggregates® [16].
Li 5 Ga 10 Table 1 shows two values of the relative mass
K . 3 Rb 6 difference for molten lithium nitrate, corresponding
*Rounded To integers. to the existence of [Li(NO;),]™ ions along with LiNO;

molecules in the melt [7]. The data of Table 1 are
also shown in the accompanying Fig. 1, from which it is evidentthat most of the points, except those for
water (which is known to have anomalous properties), have a rather clear tendency to concentrate around
a correlating line described by

M;— M,
M+ M,

=54 2 (5)

The numerical coefficient in Eq. (5) can be given a certain physical meaning on the basis of the theoretical
results of Dougherty and Dricamer [8], who showed on the basis of the thermodynamics of irreversible
processes that the following equation holds for molecules of the same shape:
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For liquid-phase isotopic mixtures, as is evident from the data in [9], the molar volumes of each compo-
nent can be set equal; i.e., V; =V,. Then

ay, = 011 Tt @ Uy O Ui Uy
a 2 [RT—2¢1¢2 ( LU1 Vuz

Bearing in mind that the second term 1n the denominator may be neglected in comparison with the first, and
that ¢;vU; /(Uy + @9) =1, we find
U, U,
Uiq = SRT ( b, 1 )

(a similar result was found in [10]; the only difference was that the expression 2RT in the denominator was
incorrectly replaced by 2RTV, where V is the average molar volume). Since the evaporation energy is
related to the heat of vaporization by U = L —RT, we have
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In this equation, T should be treated as an average temperature for the process;ie., T = T = (Ty + Ty) /2.

Using Trouton's rule, according to which L = KT holds at the boiling temperature, and using the ap-

proximation Ty = T, we finally find

_ K—R ¢ T, N K—R T,—T, 6
“lq T 2R (1/E_1)~ 2R T+ Ty (©

The numerical coefficient in (6) can be easily determined when it is taken into account that K = 20-30 for
nonpolar liquids. Then
aiq = (4.5 - 5.25) LTy

(7
T+ Ts

The numerical coefficient in (5) thus characterizes the energy of the intermolecular bond in the liquid, and
is approximately constant for nonpolar liquids if the following relation, which follows from (5) and (7),
holds:

T,—T:
T+ T,

My —M,
M+ Mz

Unfortunately, there is not sufficient experimental evidence available to check this relation.

The dashed lines in the accompanying Fig. 1 correspond to the limiting values of the numerical coef-
ficient in Eq. (7).

The deviations from dependence (5) observed in Fig. 1 can apparently be atiributed, first, to an in-
accurate determination of the quantity alig itself, as was noted by Alexander [11]. Alexander pointed out
that all these data for substances shown by numbers 1, 2, 5, 6, and 9 in Table 1 were not obtained on the
basis of mass~spectrometric analysis, but by a pycnometric method, so the accuracy of the results is de-
graded. The reliability of these data is also limited by the accuracy of the viscosity coefficients and the
bulk expansion coefficients which appear in the calculations for the Clusius separation column. Second,
some error arises in the calculation of the mass difference from Eq. (4) for aggregates of atoms, as in
melts. If, e.g., the minimum number of atoms for Li is replaced by a larger one, the corresponding point in
Fig. 1 would assume a much more satisfactory position.
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The discrepancy observed for Ga is due to a deviation from Trouton's rule. The data for UF,; were
obtained from the operation of a large apparatus in which the distorting effect of parasitic convection could
not be exactly taken into account; these data should therefore be considered approximate.

Finally, it should also be noted that Eq. (7) was obtained for the boiling temperature, while all the
experimental data in Table 1 were obtained at lower temperatures. Despite all these factors which in-
troduce an uncertainty into calculations by Eq. (5), the latter can be used for a first approximation of the
thermal diffusion constant in nonpolar liquids.

In particular, it follows from Eqs. (1) and (5) that

o TR

i.e., the thermal diffusion constant for liquids is much greater than that for gases, as was first pointed out
by Alexander [3].

NOTATION

is the thermal diffusion constant;

is the mass of the isotope or of the compound containing the isotope;
is the volume fraction of the component in the mixture;

is the molecular volume of the pure component;

is the molecular fraction of the component in the mixture;

is the evaporation energy;

is the heat of vaporization.

Hax <e =R

The indices 1 and 2 refer to the heavy and light components, respectively.
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